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Materials and Methods 

Virus selection and database construction  
We selected single-stranded RNA (ssRNA) viruses as our focal virus group because they are a 
primary pathogen group responsible for emerging human disease (2, 4). Our dataset spanned 12 
taxonomic groups of positive and negative sense ssRNA viruses that contained human 
pathogenic species (20) and covered included 80% of ssRNA virus families that contain human-
infecting species, data from ref. (4). The only human-infecting ssRNA viral families we excluded 
were the Retroviridae, which might not be representative of other ssRNA viruses due to their 
distinctive life cycle involving integration into the genome of host cells; Orthomyxoviridae, 
which can have different host origins in each genomic segment and would have required a 
different modelling approach; and the Bornaviridae, which contains only 8 species. Eleven of the 
12 groups we studied are classified as viral families by the International Committee for Viral 
Taxonomy (ICTV). The remaining group, the order Bunyavirales (formerly family 
Bunyaviridae), contained viruses from 7 families (Feraviridae, Hantaviridae, Jonviridae, 
Nairoviridae, Peribunyaviridae, Phenuiviridae and Tospoviridae). All analyses were 
qualitatively equivalent when analyzing the Bunyaviruses as a single order or as families. Most 
records were identified at the viral species level; however, when available, phylogenetically 
divergent and epidemiologically district strains (e.g., maintained by different species in different 
geographic regions) were analyzed independently.  

Using authoritative texts on viral families and the primary literature, we recorded the 
primary reservoir host taxon, evidence of arthropod involvement in transmission and the 
taxonomic group of arthropod vectors for each virus, where known (Appendix S1). We defined 
reservoirs as the host group currently accepted to be responsible for the long-term perpetuation 
of each virus (also referred to as natural host or maintenance host). To maximize host-specific 
signals within the viral genomes, viruses suspected to have multiple reservoir taxa that spanned 
>1 host class analysis were excluded from training. We used a single representative genome 
from each virus species/strain to avoid inflating model accuracy by including the same viral taxa 
in model training and validation. Single genome prediction is also more realistic for application 
to newly discovered viruses that lack multiple reference sequences.  

Reservoir host categories were operationally defined to accommodate a trade-off between 
the granularity of predictions and the number of representatives per group, while maximizing the 
utility of predictions for disease mitigation and surveillance. Specifically, we aimed to subdivide 
birds and mammals, the two main reservoir groups associated with emerging zoonotic disease 
(2), to the maximum extent possible to increase the resolution of our predictions without creating 
undersized or excessively unbalanced host classes. Birds and mammals were therefore 
progressively split to the next lower taxonomic level where this maintained at least two sub-
classes with sample sizes ≥15. Bats (order Chiroptera) were split into Pteropodiformes (families 
Pteropodidae, Rhinolophidae, Hipposideridae, Megadermatidae, and Rhinopomatidae, here 
abbreviated “Pterobats”) and ‘Vespertilioniformes’ (remaining microbat families, here 
abbreviated “Vespbats”) (21). Rodents (order Rodentia), are taxonomically diverse hosts of 
many viruses, but could not be split because available viruses were disproportionately found in 
only one subgroup (suborder Myomorpha, mouse-like rodents). Similarly, splitting the 
carnivores (order Carnivora) would have retained only a single host group above our sample size 
threshold (suborder Caniformia), so carnivores were analyzed at the order level. Birds were split 
at the superorder level into 2 classes, Neoaves (most modern birds) and Galloanserae (fowl). Our 
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final analysis used eleven categories of reservoir groups, including insect-specific and plant-
specific viruses. While insect-specific and plant-specific viruses are unlikely to cause illness in 
vertebrates, they are useful categories to include for surveillance or metagenomic applications. 
Specifically, our models could help determine whether samples from vertebrates may have an 
insect or plant origin (e.g., dietary viruses or contamination) rather than being potential 
pathogens of the vertebrate and whether viruses discovered in arthropods are likely to be 
arthropod-specific or arthropod-borne viruses of vertebrates. Rare reservoir host groups, defined 
as those with <15 virus representatives (Cetacea [N = 2], Diprotodontia [N = 2], Erinaceidae 
[N = 1], Lagomorphs [N = 6], Macropods [N = 1], Perissodactyls [N = 4], Reptiles [N = 8], 
Scandentia [N = 3] and Sorciomorpha [N = 1]) were excluded from model training, but were 
retained to assess model performance on viruses from un-represented host groups (Figure S18). 
Viral families contained between 3 and 62 virus taxa (mean = 36.4) with known reservoirs within 
one of eleven groups. The average virus group contained 7.18 reservoir host classes (range = 2-
10). We used a similar strategy to assign arthropod vectors to 4 main groups associated with viral 
transmission to vertebrates (midges, mosquitoes, sandflies and ticks), but lowered our threshold 
to 8 viruses to accommodate the lower sample sizes available when analyzing only vector-borne 
viruses. Four of twelve viral groups contained viruses transmitted by one of four main classes of 
blood-feeding arthropod vectors, with an average of 3 vector taxa per viral group (Figure 1A). 

Quantification of viral genomic traits 
For each virus species or strain, all of the coding sequences from a single representative genome 
were downloaded from Genbank, using NCBI reference sequences (RefSeqs) when available. 
Coding sequences covered complete genomes for most viruses, but large fragments and single 
segments (for segmented virus) were also included (N = 11). When reference sequences were 
unavailable, we selected a random sequence, excluding sequences labelled with the terms 
“vaccine”, “construct”, or “recombinant.” Nucleotide [A, C, G, T, N] counts were summed 
across all the coding sequences and represented as a proportion of the total coding sequence 
length of the selected species isolate; all ambiguous bases were recorded as N. Dinucleotide bias 
(relative frequencies) for each of the 16 possible dinucleotides was calculated across all coding 
sequences using the following formula: 
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where NX and NY are the total counts of nucleotides X and Y, respectively, Ntot is the total 
number of nucleotides, NXY is the total count of the dinucleotide XY, and DNtot is the total 
number of dinucleotides across all coding sequences of the selected isolate. Because the effects 
of dinucleotide bias on viral fitness are reported to be strongest at the bridge between adjacent 
codons (22) and because dinucleotide biases across codon positions were poorly correlated in our 
dataset (Figure S1), we further calculated dinucleotide bias at “bridge” and “non-bridge” codon 
positions.   

Codon pair bias was measured as the codon pair score (CPS) for each of the 4,096 (64 x 
64) possible codon-codon pairs. For completeness, stop codons were included to record rare 
cases of read through stop codons. We calculated the CPS of a given codon pair independently of 
codon and amino acid biases, following (23):  
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where A and B represent the observed counts of codons A and B, respectively, AB represents the 
observed count of codon pair AB, X and Y represent the observed counts of the corresponding 
amino acids X and Y, respectively, and XY represents the observed count of amino acid pair AB 
across all coding sequences of the selected species isolate. This CPS score determines if a given 
codon pair is over-represented (+) or under-represented (-). To avoid null values in cases where 
an amino acid pair was not observed, all codon pairs that encode for that amino acid were given 
the average CPS score for the species isolate. When codon pairs were not observed, but the 
encoding amino acid pair was observed, the codon pair was given a CPS score of -9999 to 
indicate extreme under-representation. 

Codon bias was calculated for each of the 64 codons by dividing the total count of each 
codon by the total count of all codons that encode for the corresponding amino acid or stop 
codon across all coding sequences of the selected isolate. Amino acid bias for each of the 21 
amino acids (stop is considered as an amino acid here) was calculated by dividing the total count 
of each amino acid by the total number of amino acids in the isolate. The total number of 
genomic traits considered was therefore 4229 (CPS = 4096, dinucleotide biases = 48, codon 
biases = 64, amino acid biases = 21).  

Association tests of viral genomic traits with reservoir hosts, vector types and viral taxonomic 
group 
To test broad-scale associations of viral genomic traits with host group, vector group and viral 
group, we fit macroevolutionary (trait) models to dendrograms estimated by applying 
unsupervised hierarchical clustering to all 4229 viral genomic traits. Clustering used the Ward 
(ward.D2) method (24), but results were qualitatively similar with other clustering methods. Null 
distributions for trait models were generated by randomly shuffling either virus group, host 
group, or vector group along the tips of dendrograms. We compared the fit of 500 models with 
random trait permutations to the true virus group/reservoir host/vector associations using the 
fitDiscrete function in the geiger package of R using an equal rates model without branch length 
transformations (25). Model comparisons used the difference between the average Akaike 
Information Criterion (AIC) value from 500 trait-randomized trees and the AIC value of models 
fit to true associations.  

We tested effects of reservoir host and arthropod vector associations on viral genomic 
biases using generalized linear mixed models (GLMMs). Two sets of models were compared 
using AIC. These focused on viral dinucleotide biases as a computationally manageable subset of 
all genomic features. First, we compared GLMMs with a random effect of viral taxonomic group 
and a fixed effect of reservoir/vector to a random effect only model to test effects of host 
associations on dinucleotide biases while controlling for the effects of virus evolutionary history. 
Second, to test whether effects of reservoir associations arose from convergence of biases in 
viruses from different taxonomic groups that persist in the same reservoirs, we compared models 
with and without a fixed effect of reservoir/vector using a nested random effect of 
reservoir/vector within viral taxonomic group. We used the Benjamini–Hochberg procedure with 
a false discovery rate of 0.1 to indicate the significance of p-values after correcting for multiple 
testing (26). Figure legends (Figures S2-S7) contain the threshold p-values that were considered 
significant for each set of tests.   
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Phylogenetic neighborhoods of reservoir hosts, vector types, and arthropod-borne transmission 
Clustering of reservoir host and vector taxa on viral phylogenetic trees implies that the reservoir 
host and/or arthropod vector associations of closely related viral species or strains may inform 
those of viruses with unknown reservoir hosts or vectors. Incorporating viral phylogenetic 
information could therefore improve the accuracy of machine learning analyses that use only 
genomic biases to predict reservoir hosts or vectors. However, since our analysis included highly 
divergent RNA viruses, homologous genes do not exist to align and build a single phylogenetic 
tree describing evolutionary relationships. We therefore designed a flexible routine that searched 
for regions of high sequence similarity between pairs of viruses and constructed reservoir host, 
arthropod-borne transmission and arthropod vector phylogenetic neighborhoods (PN) comprising 
the most closely related viruses. Customized local databases of virus sequences with known 
ecological associations were built using makeblastdb in the command line version of BLAST 
(27). For non-segmented viruses, we included complete genomes. For segmented viruses 
(Arenaviruses and Bunyaviruses), we used only S segments to avoid the possibility of comparing 
non-homologous segments. We next used blastn (default settings except: max_hsps = 1, 
reward = 2, word_size = 8, gap_open = 2, gapextend = 2) to find the top hits for each virus 
(excluding hits to the query virus) based on e-values. When many hits exceeded our quality 
threshold of e-value < 1e-3, viruses were secondarily ranked by bit-score. The top 5 hits were 
considered the PN of each virus. We calculated the support (S) for each reservoir host/arthropod-
borne transmission status/vector class (j) as a function of the number and pairwise identity of hits 
to the focal virus: 

,9 = ∑ ;<
∑;9 , 

where Pi is the pairwise genetic identity between the focal virus and hit i. Viruses that had no hits 
with e-values < 1e-3 were assigned equal S across all classes. These analyses were performed 
using the ape and seqinR packages of R, Biopython package in Python (28, 29). Exploratory 
analyses using more evolutionarily conserved protein sequences (blastp) predicted reservoir 
hosts less accurately, presumably reflecting the lower resolution of the PN. 

The accuracy of PN algorithms without machine learning was calculated by building 
reference training and validation databases comprised of viruses with known reservoir host or 
vector associations. We sampled datasets to match the splitting process used in the machine 
learning analyses to ensure comparability (see below). Specifically, for reservoir host 
predictions, we randomly sampled 70% of the viruses from each reservoir host group as the 
reference database (N = 311). Of the remaining viruses, 50% (N = 61) from each host group 
were discarded to mimic the dataset used for model optimization and 50% were used as a 
‘holdout’ validation set to record model performance (Figure S8). The same splitting regime was 
used for predicting whether viruses were arthropod-borne. For vector taxa prediction, we 
randomly under-sampled the majority class (mosquito viruses). Further, to retain a sufficient 
validation dataset to quantify per class accuracies, we split the data as 60% training, 12% 
discarded to mimic optimization and 28% retained for validation (i.e. a 30/70 
optimization/validation split of the 40% withheld from training). PN-based predictions for test 
sets were generated by blasting the validation viruses against the reference databases. Among the 
top 5 blast hits, we recorded the predicted reservoir host group, arthropod-borne transmission 
status, or vector type with the highest value of Sj and considered this as the PN-based prediction. 
By comparing the PN-based prediction to the true host/vector associations of each virus, we 
calculated accuracies as the proportion of correct PN predictions. Uncertainty was estimated by 
repeating this procedure over 50 splits of reference and validation datasets.  
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Machine learning analyses 
Virus selection and algorithm selection 
We used supervised learning approaches to generate functions mapping features extracted from 
viral genomes to (i) reservoir host taxa (11 classes), (ii) arthropod-borne transmission (binary) 
and (iii) the taxa of arthropod vectors (4 classes). We first identified promising algorithms by 
comparing the baseline performance of several parametric and non-parametric methods in 
predicting the same host or vector class label from the full set of 4229 genomic input features 
(Figure S9). Specifically, we compared logistic regression (LR), stochastic gradient descent 
(SGD), naïve Bayes (NB), support vector machines (SVM), k nearest neighbors (KNN), and the 
tree ensemble methods Extreme Gradient Boosting (XGB), random forests (RF) and gradient 
boosting machines (GBM). Models were trained using 10-fold cross-validation with random 
stratified splits to preserve the percentage of samples for each class. Algorithm selection used the 
following Python libraries: numpy and Pandas for matrix and dataframe handling; imblearn, 
scikit-learn, xgboost and h2o (30) for machine learning; and matplotlib for plotting. Remaining 
machine learning analyses used the h2o library in R (31, 32). 
 
Genomic feature selection  
As expected from unsupervised clustering (Figure 1), feature importance rankings from 
algorithm comparisons showed that most of the 4229 genomic biases weakly informed reservoir 
host and vector associations. To improve the computational efficiency of machine learning 
algorithms, we conducted a comprehensive search using GBM to select smaller subsets of the 
most informative features. To ensure that features selected were not tuned to a single training set, 
we quantified the average relative feature importance in 50 random class-stratified 70% training 
sets, using 5-fold cross-validation of each training set.  
 
Algorithm optimization and validation  
Datasets of viruses with known classes were split into training, optimization and validation sets 
(Figure S8). Random stratified splitting was used to preserve the percentage of samples for each 
class. Optimization sets were used exclusively for tuning models during learning and did not 
contribute to performance estimation. Validation sets were used exclusively to quantify 
predictive accuracy in ‘holdout’ data and were not used during training or optimization. For 
reservoir and arthropod-borne transmission prediction models, 70% of each class was used for 
training, 15% for optimization, and 15% for validation. For vector taxa, as imbalance between 
classes impacted performance we under-sampled the majority class (mosquitoes, N = 59) at 
random (N = 20) to balance class sizes prior to assigning viruses to training/validation sets and 
used 60% of the dataset for training, 12% for optimization, and the remaining 28% for 
validation. We optimized each model by grid-searching over a wide range of parameter settings 
(learning rate, max_depth, sample_rate, col_sample_rate, ntrees, min_rows) to find the 
combination that maximized accuracy in the optimization set. Up to 500 combinations of 
parameters were evaluated using a RandomDiscrete search. We assessed model performance of 
each optimized model on the corresponding holdout validation set. 
 
Incorporation of phylogenetic neighborhoods into machine learning analyses 
The PN prediction algorithm was built into a pipeline feeding new features into our machine 
learning training set using local BLAST databases that matched each training set. In contrast to 
the PN-only based prediction before machine learning (see above), these models were not 
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restricted to use only the majority prediction within the PN. Instead, PNs were represented as the 
relative support for each host class within the PN (Sj). For example, PNs for our vector taxa 
prediction models comprised 4 features describing relative support for midges, mosquitoes, 
sandflies, and ticks, summing to 1.  
 
Study-wide accuracies 
Averaging outputs from multiple models (i.e., “bagging”) allowed us to make predictions of the 
reservoir/arthropod-borne status/vector association of each virus in the study that incorporated 
uncertainty arising from variation among training sets. Because this approach required each virus 
to be included in many validation sets (each trained and optimized on different data subsets), we 
increased the number of models to achieve a minimum of 50 predictions for each virus for each 
prediction type. This required 550, 600 and 250 class-stratified splits of the data for reservoir 
host prediction models, arthropod-borne prediction models and vector class prediction models 
and yielded a median of 82, 130 and 90 observations per virus, respectively. We excluded 
underperforming models by averaging predictions from the upper 25% of models (based on the 
overall accuracy) that included the focal virus i in the validation set. This approach meant that 
correct prediction of the focal virus might contribute to a model being included in the top 25%; 
however, this effect was negligible given that the variation in accuracy observed among 
validation sets far exceeded the variation that could be attributed to a single focal virus. 
Consequently, we selected for generally high-performing models, not models that favored the 
focal virus. 

We defined the bagged prediction strength (BPS) for each candidate host as the average 
predicted probability of that host class across the selected set of models. The highest-ranked host 
according to BPS was considered the primary bagged prediction. By comparing primary bagged 
predictions to the recorded host associations of each virus, we were able to infer study-wide per-
class accuracies (Figure 2C,G) and virus group-level accuracies (Figure S13H-J). To further 
quantify model performance, we also recorded the rank of the true host among all possible hosts 
after bagging predictions across models. 
 
Prediction of unknown reservoir hosts and arthropod vectors of orphan viruses 
We applied trained GBMs to predict the unknown reservoir hosts, arthropod-borne transmission 
status or arthropod vectors of “orphan” RNA viruses using the h2o.predict function in the h2o 
package of R (31). Predictions described the relative support for each candidate host/arthropod-
borne/vector class as BPS. As above, predictions were bagged from 25% of models with the 
highest validation set accuracies. Given the higher accuracy of the GBMs that combined 
genomic features and PN for all prediction types (i.e., reservoir, arthropod-borne and vector 
type), we focused on the projections of those models for most viral groups. Exceptions were 
reservoir host predictions for orphan Filoviruses and Togaviruses, where we favored the 
predictions of the GBM using only the genomic features since these models had slightly higher 
accuracy for those viral groups (Figure S13H).   

Temporal evaluation of changes in viral genomic features and model predictions in a new host 
environment: the 2014-2016 Zaire ebolavirus epidemic 
We expected that because host-associated signals in viral RNA involve many substitutions 
spread across the genome, they were unlikely to be altered by short-term evolution in novel hosts 
(7). To confirm this expectation, we analyzed previously published Zaire ebolavirus (ZE) 
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genomes collected during the West African epidemic, where a presumed bat-to-human cross-
species infection sustained human-to-human transmission from 2014 until 2016 (33). Several 
features made the ZE outbreak suitable for this case study. First, the duration of human-to-human 
transmission was well-documented and followed a single cross-species transmission event 
between two reservoir host classes included in our models (Pterobat and primate). Second, 
genome sequences with known sampling dates were available from throughout the outbreak. 
Third, our models were able to detect primate signal in other Filovirus genomes (Figure 3A). 
These observations suggested that this combination of dataset and model should be suitable to 
specifically address whether short-term transmission in a novel host (~2 years) alters genomic 
biases and whether our models’ predictions were altered by such short-term evolution.  
 We calculated genomic biases from 969 ZE genomes from Guinea, Liberia and Sierra 
Leone that had known months of collection. Two hundred GBMs were trained using the genomic 
features used in our main analysis, using iterative splitting of the data into training, optimization 
and validation sets as above. We removed the single historical representative of ZE to avoid 
including the same virus species in the training and prediction sets. The reservoir hosts of the 
genomes of the ZE viruses from the West African epidemic were predicted from trained models 
using the function h2o.predict in R. We recorded the BPS for each of the 11 reservoir host 
groups for each ZE sequence using the top 25% of models, scored according to validation set 
accuracy. Statistical analyses tested whether the BPS of the primate and Pterobat classes changed 
during the course of the epidemic using a GLMM with time (year and month represented by 
decimal, i.e., January 2015 = 2015.08) as a fixed effect and a random intercept for country of 
viral origin. We also tested whether each of the top 50 genomic biases changed during the 
epidemic using GLMMs with p-values corrected using the false discovery rate method. Term 
significance was estimated by comparing full models to models with only the random effect of 
country using an ANOVA (34).  

Supplementary Text 

Post-hoc analysis of misclassifications 
To maximize the utility of our models for guiding future research and responses to emerging 
viruses, it was important to understand (i) whether model predictions contain signals of being 
erroneous or correct and (ii) how far off model predictions were when the top prediction was a 
misclassification. Using the bagged predictions from validation sets, we first evaluated whether 
stronger predictions (i.e., higher BPS for the top class) tended to be correct more often than 
equivocal predictions (i.e., the top class had only slightly higher BPS than other classes).  For 
each prediction type, we fit logistic regressions relating the BPS of the top predicted class to the 
binary outcome of that prediction (correct or incorrect). All three prediction types showed 
significant positive relationships which implied that stronger predictions were likely to be true 
(Figure S13A-C). Indeed, strong predictions of arthropod-borne status (BPS>0.80) and vector 
identity (BPS>0.5) were nearly always correct. In contrast, incorrect reservoir predictions 
sometimes had strong BPS, indicating the greater challenge of predicting reservoirs (Figure 
S13A-C).  Nevertheless, correct predictions spanned all prediction probabilities, and for reservoir 
host models and vector taxa models, even the weakest predictions outperformed accuracies 
expected by chance (number of classes-1). For models predicting whether viruses have arthropod-
borne transmission, a high baseline accuracy by chance alone (50%) meant that only GBM 
prediction strengths >0.65 outperformed chance. These results enhanced the interpretability of 
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orphan virus predictions by providing confidence estimates that predictions were correct and by 
showing that our models were less likely to project strong support to false predictions than to 
true predictions. While lower predicted probabilities may still be informative, these should be 
treated with greater caution and secondary predictions should be considered plausible (see 
below). 

We next evaluated whether erroneous model predictions still contained useful 
information. This would be the case if misclassifications were not systematically biased by 
reservoir or vector taxonomy and the true host was instead ranked highly among alternative 
candidates. Heatmaps (Figure 2) showed minor biases between artiodactyls and primates, 
between Neoaves and Galloanserae birds and between Pterobats and Vespbats. To enhance these 
patterns, we replotted matrices following removal of the majority (correctly predicted diagonal) 
class (Figure S13F,G). Of the 123 viruses whose reservoir host was misclassified by GBMs, the 
true reservoir was most often the second rank predicted host (Figure S13D), such that the true 
reservoir occurred in the top 2 predictions for 81% of viruses and in the top 3 predictions for 
86% of viruses (Figure 2C). For 12 viruses with misclassified vector taxa, the true vector was the 
second ranked prediction for 66.7% (Figure S13E), such that the true vector occurred within the 
top 2 predicted vectors for 95.9% of arthropod-borne viruses (Figure 2G). We omitted the 
ranking analysis of arthropod-borne transmission status because the binary nature of those 
models ensured that the second ranked prediction was correct.  

Of the 527 viruses in the arthropod-borne prediction dataset, 5 (0.09%) consistently 
disagreed with the accepted transmission route across all model types (PN alone, PN and 
genomic features, genomic features alone). Chaoyang virus is a putative insect-specific 
Flavivirus that our models predicted to be arthropod-borne (BPS = 0.7), meaning it may also 
have a vertebrate host. Crimean-Congo hemorrhagic fever virus and Dugbe virus are 
Bunyaviruses that are believed to be transmitted predominately by ticks, but our models suggest 
an underappreciated role for direct transmission (BPS = 0.94 and 0.79, respectively). Moussa 
virus is Rhabdovirus detected only in arthropods but was predicted not to be arthropod-borne 
(BPS = 0.86), suggesting it may be insect-specific. Finally, Paraiso Escondido virus is a 
Flavivirus predicted to arthropod-borne (BPS = 0.73) despite suggestions that it is insect-specific 
based on failure to replicate vertebrate cells. Our reservoir prediction models also suggest an 
insect reservoir (BPS = 0.69). Additional work is required to determine the reasons for this 
apparent misclassification. BPS values reported above were from models with the highest 
family-specific bagged accuracy (Figure S13J). 

Evolution of genomic biases during the 2014-2016 Zaire ebolavirus epidemic  
GLMMs showed that most (41/50) genomic features changed during the course of the epidemic 

(false discovery corrected p-value < 0.08). While we observed significant decreases in 19 biases 
and significant increases in 22 biases, the magnitude of changes was small (Figure S17A). 
Intriguingly CpG dinucleotides declined across all codon positions (β = -0.002, marginal r2 = 
0.07, conditional r2 = 0.31), at non-bridge codon positions (β = -0.003, marginal r2 = 0.08, 
conditional r2 = 0.3) and at bridge codon positions (β = -0.001, marginal r2 = 0.02, conditional r2 
= 0.1). CpGs are widely suppressed in viruses of vertebrates, perhaps to evade immune defenses 
that target this sequence motif (8, 9, 35, 36). Our results therefore suggest that this selection 
pressure intensified during human-to-human transmission of ZE, which is more broadly 
consistent with the idea that fine-tuning of genomic features to optimal levels for different host 
environments may play a role in viral adaptation.  
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Primate BPS of ZE varied between 0.5 and 3.6% and increased significantly during 
human-to-human transmission, though the effect size was small and explained relatively little 
variance (Figure S17B, β = 0.002, marginal r2 = 0.03). Support for the Pterobat reservoir 
declined significantly during the same time period, though again explaining a small fraction of 
variance (Figure S17B, β = -0.02, marginal r2 = 0.06). 
 Taken together, these results suggest that the genomic biases of ZE evolved directionally 
in the novel primate host, but that the magnitude of change was insufficient to obscure model 
predictions of reservoirs over a 2-year period of human-to-human transmission. The timescale at 
which transmission in novel hosts could be detected is likely to vary as a function of the host 
groups involved, viral mutation rates and generation times and other constraints on viral 
genomes, but will likely occur on the order of decades, rather than years. Additional analyses of 
viruses with sustained transmission in novel host groups may help clarify these timescales and 
their degree of consistency across viral groups.  

Mixed host signals in the Middle East Respiratory Syndrome coronavirus genome 
Middle East Respiratory Syndrome coronavirus (MERS) emerged as a novel human virus in 
2012. Bats (specifically Vespbats, by our terminology) were initially posited as the most likely 
reservoir based on the discovery of closely related or identical coronaviruses in bats (37) and 
receptor usage patterns (38, 39). However, serological evidence of infection in dromedary 
camels since the 1980s (40) and evidence for camel-to-human transmission (41) led to the 
emerging consensus that camels (an Artiodactyl) are the main source of human infections. 
Whether camels are now the sole reservoir (i.e., independently responsible for the long-term 
perpetuation of MERS in nature) and, if so, how long this has been the case remains poorly 
understood (42, 43). Here, we provide a more detailed discussion of how our models deal with 
MERS, and potentially other viruses with similar epidemiological histories, to illustrate the 
limitations of our models, but also the safeguards that are built in to avoid overconfidence in 
singular erroneous predictions. 
 GBMs trained on PNs alone supported a bat reservoir of MERS, but with low confidence 
in distinguishing the two bat classes (BPSPterobat = 0.18 ± 0.13 standard deviation; BPSVespbat = 
0.26 ± 0.17). Support for an Artiodactyl reservoir was low and similar to the remaining 8 
reservoir groups (0.05<BPS<0.08). Adding genomic features to PN increased support for the 
Pterobat and Vespbat classes (BPSVespbat = 0.55 ± 0.37; BPSPterobat = 0.34 ± 0.39), had little 
influence on the probability of an Artiodactyl reservoir (BPSArtiodactyl = 0.06 ± 0.14) and reduced 
support for all other reservoir classes (BPS < 0.01). Finally, GBMs using only genomic features 
shifted support away from Pterobat (BPS = 0.07 ± 0.13) to Artiodactyl (BPS = 0.21 ± 0.28, a 3.7-
fold increase in Artiodactyl support from the combined model) and retained support for a 
Vespbat reservoir (BPS = 0.67 ± 0.37). These results imply that the PN contributes Pterobat 
signal which is inconsistent with genomic features, while genomic biases support Vespbats and 
Artiodactyls as candidate reservoirs, the two classes currently considered epidemiologically 
relevant. Thus, despite the fact that our models were designed to predict a single reservoir class, 
rather than host range, they may in some cases be able to detect mixed reservoir signals in viral 
genomes, though this requires confirmation in future studies. 
 MERS also illustrates the value of post hoc analysis of BPS to guide model 
interpretation. The low post-hoc probability of top prediction being true in the combined model 
(0.51 ± 0.037; estimated from the logistic regression in Figure S13A) and the expected gain in 
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accuracy from considering secondary predictions as plausible (Figure 2C, Figure S13D) implies 
that hosts beyond the top prediction could be considered. In the case of MERS, this would point 
to an Artiodactyl reservoir in the genomic feature only model or a Pterobat reservoir in the 
combined model. Generally, for making real-world decisions on research, surveillance and 
management, we recommend considering the predictions from both the combined and genomic 
feature models and viewing these predictions in light of what is known about the virus in 
question from other sources. When divergent predictions arise as a result of conflicting 
information between phylogenetic and genomic bias features as they did for MERS, we suggest 
greater confidence in the genomic bias models, since these had higher accuracy than the PN only 
models (Figure 2C, Figure S10B) and have a better chance of capturing the host associations of 
viruses that historically jumped between divergent host groups since, unlike PN, they do not 
depend entirely on evolutionary history (Figure 1B,C). 
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Fig. S1. Relationships between viral dinucleotide biases calculated from different codon 

positions. Panels shows the correlation between dinucleotide bias across all coding nucleotides 
in coding regions (x-axis) and the bias of dinucleotides that bridge adjacent codons (black) and 
those that do not (“non-bridge”, red). The dashed grey line indicates the expectation that bridge 
and non-bridge dinucleotide biases perfectly match the pattern across all sites. Values in the 
bottom right are Pearson’s correlation coefficients. Blue text indicates the correlation coefficient 
between bridge and non-bridge dinucleotides. Values in bold are statistically significant, 
including negative correlations. Each point represents a different virus species or strain. 
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Fig. S2. Effects of reservoir host associations on viral dinucleotide bias. Boxplots show the 
distributions of dinucleotide frequencies across relatively common reservoir host taxa (N ≥ 15 
viruses). Statistical support was evaluated as the increase in the Akaike information criterion 
(AIC) comparing generalized linear mixed models with and without a host group effect while 
including a random effect of viral group (dAIC-1). A second set of model comparisons tested 
cross-group effects of reservoir hosts on each dinucleotide by comparing models with and 
without a host effect while including a nested random of host within viral group (dAIC-2). 
Positive dAIC indicate increases in AIC after removing the reservoir host effect (i.e., poorer 
model fit). Bold dAIC values indicate statistical significance of the reservoir host effect 
according to F tests after Benjamini–Hochberg correction with a 10% false discovery rate. P 
values were considered statistically significant only if p ≤ 0.008 (dAIC-1) and p ≤ 0.027 (dAIC-
2).    
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Fig. S3. Effects of reservoir host associations on viral dinucleotide bias at codon bridge 

positions. Boxplots show the distributions of dinucleotide frequencies calculated only at codon 
bridge positions across relatively common reservoir host taxa (N ≥ 15 viruses). Statistical 
support was evaluated as the increase in the Akaike information criterion comparing generalized 
linear mixed models with and without a host group effect while including a random effect of 
viral group (dAIC-1). A second set of model comparisons tested cross-group effects of reservoir 
hosts on each dinucleotide by comparing models with and without a host effect while including a 
nested random of host within viral group (dAIC-2). Positive dAIC indicate increases in AIC after 
removing the reservoir host effect (i.e., poorer model fit). Bold dAIC values indicate statistical 
significance of the reservoir host effect according to F tests after Benjamini–Hochberg correction 
with a 10% false discovery rate. P-values were considered statistically significant only if 
p ≤ 0.008 (dAIC-1) and p ≤ 0.005 (dAIC-2).    
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Fig. S4. Effects of reservoir host associations on viral dinucleotide bias at non-bridge codon 

positions. Boxplots show the distributions of dinucleotide frequencies calculated only at non-
bridge codon positions across relatively common reservoir host taxa (N ≥ 15 viruses). Statistical 
support was evaluated as the increase in the Akaike information criterion comparing generalized 
linear mixed models with and without a host group effect while including a random effect of 
viral group (dAIC-1). A second set of model comparisons tested cross-group effects of reservoir 
hosts on each dinucleotide by comparing models with and without a host effect while including a 
nested random of host within viral group (dAIC-2). Positive dAIC indicate increases in AIC after 
removing the reservoir host effect (i.e., poorer model fit). Bold dAIC values indicate statistical 
significance of the reservoir host effect according to F tests after Benjamini–Hochberg correction 
with a 10% false discovery rate. P-values were considered statistically significant only if 
p ≤ 0.037 (dAIC-1) and p ≤ 0.022 (dAIC-2).    
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Fig. S5. Effects of arthropod vector associations on viral dinucleotide bias. Boxplots show 
the distribution of dinucleotide frequencies across relatively common arthropod vectors (N ≥ 8 
viruses) of vertebrate viruses. Statistical support was evaluated as the increase in the Akaike 
information criterion comparing generalized linear mixed models with and without a vector 
group effect while including a random effect of viral group (dAIC-1). A second set of model 
comparisons tested cross-group effects of vectors on each dinucleotide by comparing models 
with and without a vector effect while including a nested random of vector within viral group 
(dAIC-2). Positive dAIC indicate increases in AIC after removing the vector effect (i.e., poorer 
model fit). Bold dAIC values indicate statistical significance of the reservoir host effect 
according to F tests after Benjamini–Hochberg correction with a 10% false discovery rate. P-
values were considered statistically significant only if p ≤ 0.064 (dAIC-1) and p ≤ 0.021 (dAIC-
2).    
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Fig. S6. Effects of arthropod vector associations on viral dinucleotide bias at codon bridge 

positions. Boxplots show the distribution of dinucleotide frequencies calculated only at codon 
bridge positions across relatively common arthropod vectors (N ≥ 8 viruses) of vertebrate 
viruses. Statistical support was evaluated as the increase in the Akaike information criterion 
comparing generalized linear mixed models with and without a vector group effect while 
including a random effect of viral group (dAIC-1). A second set of model comparisons tested 
cross-group effects of vectors on each dinucleotide by comparing models with and without a 
vector effect while including a nested random of vector within viral group (dAIC-2). Positive 
dAIC indicate increases in AIC after removing the vector effect (i.e., poorer model fit). Bold 
dAIC values indicate statistical significance of the reservoir host effect according to F tests after 
Benjamini–Hochberg correction with a 10% false discovery rate. P-values were considered 
statistically significant only if p ≤ 0.01 (dAIC-1) and p ≤ 0.017 (dAIC-2).    
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Fig. S7. Effects of arthropod vector associations on viral dinucleotide bias at non-bridge 

codon positions. Boxplots show the distribution of dinucleotide frequencies calculated only at 
non-bridge codon positions across relatively common arthropod vectors (N ≥ 8 viruses) of 
vertebrate viruses. Statistical support was evaluated as the increase in the Akaike information 
criterion comparing generalized linear mixed models with and without a vector group effect 
while including a random effect of viral group (dAIC-1). A second set of model comparisons 
tested cross-group effects of vectors on each dinucleotide by comparing models with and without 
a vector effect while including a nested random of vector within viral group (dAIC-2). Positive 
dAIC indicate increases in AIC after removing the vector effect (i.e., poorer model fit). Bold 
dAIC values indicate statistical significance of the reservoir host effect according to F tests after 
Benjamini–Hochberg correction with a 10% false discovery rate. P-values were considered 
statistically significant only if p ≤ 0.02 (dAIC-1) and p ≤ 0.033 (dAIC-2).    
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Fig. S8. Data splitting in machine learning analyses. At each round of model iterations, the 
full dataset was split into a training set (blue), optimization set (red) and validation set (green). 
For reservoir host prediction and arthropod-borne prediction, we trained each model on a 
randomly selected 70% of each class, optimized models on 15% of each class and estimated 
performance on the remaining 15% of each class, which were entirely withheld from training. 
Vector taxa prediction models were trained on 60% of each vector class. The remaining 40% of 
viruses were split 30/70 for optimization and validation. Following rounds of training, models 
were scored for overall accuracy (number correct/total) and per class accuracies. The best 25% 
of models based on overall accuracy were used for orphan predictions and to generate bagged 
predictions for each virus from models trained on different training sets.  
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Fig. S9. Comparison of machine learning algorithms using all genomic features. Boxplots 
show the median, quartiles and range of accuracies for 8 algorithms from 10-fold cross 
validation of the same training set, each trained on the same genomic features for reservoir host 
prediction (A, 11 classes), arthropod-borne status (B, 2 classes), and vector taxon (C, 4 classes). 
The dashed red line (10.6%, 60%, and 29.6% respectively) indicates the expected accuracy from 
a null model where classes were assigned at random in proportion to their frequency in the 
training set.    
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Fig. S10. Feature selection, model comparison and feature importance for reservoir host 

prediction. (A) Validation set accuracies across GBMs trained on different numbers of genomic 
features. Points and lines are medians and standard deviations from 25 models trained, optimized 
and validated on different data splits. The dashed line is the accuracy expected from a null model 
(classes randomly assigned in proportion to their frequency in the training set). The rightmost 
violin shows the accuracy from models trained on 50 randomly selected genomic features. 
Kruskal-Wallis tests with post-hoc Tukey comparisons indicated 50 as the minimal number of 
features that was significantly better than 10 (mean rank difference = 35.86, p = 0.014). We 
therefore retained 50 genomic features (47.3% of cumulative feature importance) in later 
analyses. (B) Accuracies for PNs without machine learning, and GBMs trained on PNs, 50 
genomic biases and the combination of genomic biases and PNs (50 models each). (C) Feature 
importance averaged (± standard error) over 50 models. Genomic bias names use 3 letters for 
codons (e.g., ATG.Bias) and single letters for amino acids (e.g., L.Bias for Leucine bias). Longer 
strings are codon pair biases (e.g., ACC.T..CCG.P is bias in the use of AAC and CCG codons to 
encode sequential Threonine and Proline amino acids). The inset barplot shows the ratio between 
observed and expected frequencies of each class of genomic features among the top 50 features. 
The 1:1 line indicates features are as frequent in the top 50 as expected by chance.  
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Fig. S11. Feature selection, model comparison and feature composition for prediction of 

whether viruses are transmitted via an arthropod vector. (A) Validation set accuracies across 
GBMs trained on different numbers of genomic features. Each violin summarizes 25 models 
trained and validated on different data splits. Models with >10 features were statistically 
equivalent, so we retained the top 25 genomic features for further analyses (71.8% of cumulative 
feature importance). (B) Validation set accuracies for PNs without machine learning, and GBMs 
trained on PNs alone, 25 genomic biases and the combination of 25 genomic biases and PNs (50 
models each). (C) Feature importance (± standard error) of the combined model, averaged over 
50 models and the distribution of the top 25 genomic features across categories of bias. Panel 
formatting follows Figure S10. 
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Fig. S12. Feature selection, model 

comparison and feature composition for 

prediction of arthropod vectors of known 

arboviruses. (A) Validation set accuracies 
across 25 GBMs trained on different 
numbers of genomic features. Models using 
100 features performed significantly better 
than those using 25 (mean rank difference = 
28.54, p = 0.043) or 200 features (mean rank 
difference = 28.72, p = 0.041), but models 
using 50 features did not. We therefore 
retained the top 100 genomic features for 
vector taxa prediction (82.0% of cumulative 
feature importance). (B) Validation set 
accuracies for PNs without machine learning, 
and GBMs trained on PNs alone, 100 
genomic biases and the combination of 100 
genomic biases and PNs (50 models each). 
(C) Feature importance (± standard error) of 
the combined model, averaged over 50 
models and the distribution of the top 100 
genomic features across categories of bias. 
Panel formatting follows Figure S10. 
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Fig. S13. Post hoc analyses of misclassification. (A-C) Logistic regression models for each 
prediction type, relating the strength of GBM predictions (BPS) to the prediction outcome. The 
blue line is the model prediction with standard error (grey shading). Points are observed 
outcomes (1 = correct, 0 = incorrect). The dashed line is the null accuracy, defined here as the 
number of classes-1. (D-E) The rank of the true reservoir and vector for misclassified viruses. 
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Plots show the number of viruses within each category. (F-G) Heatmaps from the main text 
(Figure 2) with correct predictions omitted to highlight patterns in misclassification. (H-J) 
Scatterplots showing the effects of sample sizes in each viral group on accuracy for the genomic 
trait only model (squares) and for the combined genomic trait and PN model (circles). Reservoir 
hosts from larger viral groups were predicted more accurately in the combined model (Pearson’s 
correlation: r = 0.65 for the combined model, p = 0.02), with a weaker non-significant trend in 
the genomic feature only model, r = 0.31, p = 0.33) for the genomic trait only model, p < 0.05). 
The size of viral groups was not related to vector prediction accuracy (p > 0.05) but was slightly 
negatively related to accuracy of predictions of arthropod-borne transmission (genomic trait 
model: r = -0.70, p = 0.012; combined model: r = -0.46, p = 0.14).   
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Fig. S14. Reservoir predictions for 36 emerging orphan viruses. Boxplots show the 
probability distribution of each reservoir group across the top 25% of GBMs. SFTS=Severe 
Fever with Thrombocytopenia Syndrome.  
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Fig. S15. Reservoir predictions for 31 orphan viruses detected through active surveillance 

of reservoirs or vectors. Boxplots show the probability distribution of each reservoir group 
across the top 25% of GBMs. Red text indicates the host where each virus was detected.   
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Fig. S16. Predictions of arthropod-borne transmission status and vector type for viruses 

with unknown transmission routes or vector taxa. Boxplots show the probability arthropod-
borne transmission (A) and the probability of each vector group inferred from the top 25% 
GBMs. 
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Fig. S17. Temporal dynamics of viral genomic biases and model predictions during the 

West African Zaire ebolavirus epidemic. (A) The 10 genomic features with the largest 
absolute effect sizes according to GLMMs. Points are colored according to country of origin (red 
= Guinea; green = Liberia; blue = Sierra Leone). IQR = interquartile range for all viruses in the 
reservoir host model. (B) Bagged prediction scores for the primate and Pterobat reservoir classes 
over the course of human-to-human transmission. Fitted lines are linear models with 95% 
confidence interval (shading) for illustrative purposes only All relationships shown were 
statistically significant in GLMMs 
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Fig. S18. Predictions of reservoir hosts for viruses from underrepresented host groups. 
Boxplots show the probability distribution of each reservoir group across the top 25% of GBMs. 
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